AHIT™
Autologous Immune Therapy
by Dr. med. Horst Kief
Presentation Istanbul Okt 2012
Overview

- Mode of action
- Malfunctioning
- Facts and Figures
- Introduction
- History
- Background
- Indications
 - Neurodermatitis, Psoriasis, Asthma
 - Colitis
 - Poliarthritis
 - Hepatitis
 - HIV
 - Cancer
- Culture Transformation Test (KTT)
- Summary
- Questions & Answers
Mode of action

- Retrieval of immune-modulation messengers from the individual patient’s blood and urine (cytokines)
- Controlled increase of autologous messengers
- Giving back autologous messengers to the individual
Malfunctioning immune system caused by:

- Personality structure
- Allergens
- Climate
- Genetic factors
- Environment

Typical diseases

- Seborrhoic Eczema
- Allergic Rhinitis
- Contact dermatitis
- Urticaria
- Chronic Bronchitis
- Neurodermatitis
- Psoriasis
- Asthma

Improvement

AHIT™ – Autologous Immune Therapy
Lifetime prevalence allergic diseases

Source: Informationservice of environmental medicine, Germany

H. Kief Istanbul 2012
Lifetime prevalence bronchial asthma, allergic coryza and urticaria

Source:
Informationservice of environmental medicine, Germany
Lifetime prevalence of allergic eczema, neurodermatitis, and food allergies.
The Autologous Immune Therapy

How does the AHIT ™ work?
Reduction of eosinophilic cationic protein

Comparison of ECP levels:
- Prior to AHIT therapy
- 121 days after AHIT therapy

n = 31
Decrease of IgE with AHIT™

Prior AHIT therapy compared to 158 days after AHIT therapy. The IgE levels are measured in U/ml.

- Prior AHIT therapy: IgE levels are significantly higher.
- 158 days after AHIT therapy: IgE levels have decreased.

Sample size: n = 37

H. Kief Istanbul 2012
Control of cytokines in Vaccine and serum of patients with an atopic disease

H. Kief Istanbul 2012
Regulation effects of AHIT™ on the immune system of patients affected with atopic diseases

H. Kief Istanbul 2012
Indications of AHIT™

Neurodermatitis
Results of treating neurodermatitis

Multicentre study

Full remission: 41%
No improvement: 7%
Improvement: 11%
Drastic improvement: 41%

n = 139

H. Kief Istanbul 2012
Results of treating neurodermatitis

long term study (2,5 years)

- Full remission: 37%
- No improvement: 8%
- Improvement: 11%
- Drastic improvement: 44%

n = 115
Success of the AHIT™ therapy

about 8 years after therapy

no improvement 13%
slight improvement 19%
improvement 27%
good improvement 23%
strong improvement 18%

n = 135

Dissertation University of Heidelberg 1997

H. Kief Istanbul 2012
Results of treating neurodermatitis

coloration of corticosterone cream/month

before therapy
after therapy

number of patients
100-200g ca.100g ca.50g 1-50g nothing

H. Kief Istanbul 2012
Results of treating neurodermatitis

Consumption of skin care / month

Number of patients

- 500-1000g
- 200-500g
- 100-200g
- 1-100g
- Nothing

Before therapy
- n = 231

After therapy

H. Kief Istanbul 2012
Duration of disease, treatment and remission with AHIT™ (neurodermatitis)

remission after AHIT®

- 91.5%

Treatment

- 13%

Disease

- 115 days

n = 231

H. Kief Istanbul 2012
Neurodermatitis – children

Time to full remission: 8 month

H. Kief Istanbul 2012
Neurodermatitis – children

Time to remission: 7 month

H. Kief Istanbul 2012
Neurodermatitis – children

Long time remission: 5 years

H. Kief Istanbul 2012
Neurodermatitis – children

Time to full remission: 6 month

H. Kief Istanbul 2012
Neurodermatitis – children

Control after 2 years of remission

H. Kief Istanbul 2012
Neurodermatitis – children

Time to full remission: 9 month

H. Kief Istanbul 2012
Neurodermatitis – teenager

Control after 3 years of remission

H. Kief Istanbul 2012
Neurodermatitis – teenager

Control after 8 years of remission

H. Kief Istanbul 2012
Neurodermatitis – adults

Time to remission 8 month

H. Kief Istanbul 2012
Neurodermatitis – adults

Long time remission over 15 years

H. Kief Istanbul 2012
Neurodermatitis – adults

Long time remission, control after 1 year

H. Kief Istanbul 2012
Neurodermatitis – adults

Long time remission, control after 1 year
H. Kief Istanbul 2012
Neurodermatitis – adults

Long time remission, control after 1 year

H. Kief Istanbul 2012
Neurodermatitis – adults

Side effects caused by cortisone occlusive bandage

Time to remission 5 month
The Culture-Transformation-Test with patients suffering Neurodermatitis

Impact of antigens, toxins and allergens on the morphology and cell count of blood
raw data

$\Delta%$ granularity = amount of chromatophil biomaterial of Granulocytes and Lymphocytes.

$\Delta%$ RNA/DNA-concentration of Granulocytes and Lymphocytes.

Toxicity effects $\Delta%$ cell volume \times $\Delta%$ cells per µl.

$\Delta%$ granularity, $\Delta%$ RNA / DNA and the toxicity effect are raw data.

The toxicity effect is most important.
Sensibility factors

Sensibility factor 1 includes the above raw data and transforms them mathematically into a diagnostic utilizable result.

Sensibility factor 3 includes the variations of the numbers of Thrombocytes, Lymphocytes and Monocytes in addition to SF 1.

Sensibility factor 4 includes the data of SF 1 in addition to difference of cell counts of SF 3 as well as the variation of monocytes. It represents to an increasing degree the antigen-recognition of the cellular immune system.

Due to the affinity of different kinds of agents to particular cell families only the summary of all results deliver a comprehensive picture of the impact on the cellular immune system.
Neurodermatitis - KTT

The following items can be tested:

Bakteria

- Borrelia
- Chlamydia
- Vibrio Cholerae
- Corynebacteria
- Diphteria
- hämophilus (mono-culture)
- Meningococci
- Mycobacteria
- Mycoplasma
- Pneumococci
- Propionibacteria
- Proteobacteria
- Pseudomonas
- Serratia (D7)

- Sinusitis bacteria
- Staphylococci (D5)
- Streptococci (D5)
- Tetanus
- Typhus
- Escherichia Coli, Morganella morganii, Proteus mirabilis, Klebsiella pneumoniae, Enterococcae faecaliae as mix
- Diphteria pertussis, Tetanus, Haemophilus as mixture
- path. Colibacteria (ca. 60 different strains)

H. Kief Istanbul 2012
Sinusitis bacteria:
Streptococcus pneumoniae (Typ I, II, III, V, VIII, XII), Streptococcus pyogenes group A, Streptococcus dysgalactiae group C, Enterococcus faecium, Enterococcus faecalis, Streptococcus group G, Staphylococcus aureus, Haemophilus influenza type B, Moraxella catarrhalis, Neisseria subflava var. flava, Neisseria subflava perflava, Klebsiella pneumoniae ss pneumoniae, Acinetobacter calcoaceticus as mixture.

Pneumococci:
Polysaccharides of serotype 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19F, 19A, 20, 22F, 23F, 33F
<table>
<thead>
<tr>
<th>Viruses</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Adenoviruses</td>
<td>- Aspergillus fumigatus</td>
</tr>
<tr>
<td>- Cytomegalovirus</td>
<td>- Aspergillus niger</td>
</tr>
<tr>
<td>- FSME</td>
<td>- Candida</td>
</tr>
<tr>
<td>- Yellow fever</td>
<td>- Mucor mucedo</td>
</tr>
<tr>
<td>- Influenza virus</td>
<td>- Mucor racemosus /Aspergillus niger (combination)</td>
</tr>
<tr>
<td>- Hepatitis A (mono culture)</td>
<td>- Aspergillus fum., Mucor mucedo, Penicillinum not., Pullularia pul., Rhizopus nig., Serpula lac. (combination)</td>
</tr>
<tr>
<td>- Hepatitis A und B (combination)</td>
<td></td>
</tr>
<tr>
<td>- Hepatitis A + Salmonella typh (combination)</td>
<td></td>
</tr>
<tr>
<td>- Herpes virus</td>
<td></td>
</tr>
<tr>
<td>- Measles (mono culture)</td>
<td></td>
</tr>
<tr>
<td>- Measles, mumps, rubella viruses</td>
<td></td>
</tr>
<tr>
<td>- Papilloma virus</td>
<td></td>
</tr>
<tr>
<td>- Parapoxiviruses</td>
<td></td>
</tr>
<tr>
<td>- Poliovirus</td>
<td></td>
</tr>
<tr>
<td>- Rotaviruses</td>
<td></td>
</tr>
<tr>
<td>- Rubella (mono culture)</td>
<td></td>
</tr>
<tr>
<td>- rabies viruses</td>
<td></td>
</tr>
<tr>
<td>Allergens</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>- Alder</td>
<td></td>
</tr>
<tr>
<td>- Apple</td>
<td></td>
</tr>
<tr>
<td>- Barley</td>
<td></td>
</tr>
<tr>
<td>- Birch</td>
<td></td>
</tr>
<tr>
<td>- Cat epithelia</td>
<td></td>
</tr>
<tr>
<td>- Celery</td>
<td></td>
</tr>
<tr>
<td>- Chicken</td>
<td></td>
</tr>
<tr>
<td>- Cow’s milk</td>
<td></td>
</tr>
<tr>
<td>- Dog epithelia</td>
<td></td>
</tr>
<tr>
<td>- Early Bloomers</td>
<td></td>
</tr>
<tr>
<td>- Eggs</td>
<td></td>
</tr>
<tr>
<td>- Grains</td>
<td></td>
</tr>
<tr>
<td>- Grasses</td>
<td></td>
</tr>
<tr>
<td>- Hazel</td>
<td></td>
</tr>
<tr>
<td>- Hazelnut</td>
<td></td>
</tr>
<tr>
<td>- Horse epithelia</td>
<td></td>
</tr>
<tr>
<td>- Middle bloomers</td>
<td></td>
</tr>
<tr>
<td>- Mite (acarine)</td>
<td></td>
</tr>
<tr>
<td>- Mugwort</td>
<td></td>
</tr>
<tr>
<td>- Mussel</td>
<td></td>
</tr>
<tr>
<td>- Oat</td>
<td></td>
</tr>
<tr>
<td>- Peanuts</td>
<td></td>
</tr>
<tr>
<td>- Pork</td>
<td></td>
</tr>
<tr>
<td>- Rye</td>
<td></td>
</tr>
<tr>
<td>- Salmon</td>
<td></td>
</tr>
<tr>
<td>- Tomato</td>
<td></td>
</tr>
<tr>
<td>- Trout</td>
<td></td>
</tr>
<tr>
<td>- Turkey</td>
<td></td>
</tr>
<tr>
<td>- Venom (bee)</td>
<td></td>
</tr>
<tr>
<td>- Venom (wasp)</td>
<td></td>
</tr>
<tr>
<td>- Wheat</td>
<td></td>
</tr>
<tr>
<td>- Willow</td>
<td></td>
</tr>
</tbody>
</table>

H. Kief Istanbul 2012
Neurodermatitis - KTT

Cumulative statistics of immune modulative effects on blood of patients suffering Neurodermatitis via different toxins and antigens

Δ% Granularity: amount of stainable bio-material of Granulocytes and Lymphocytes
Neurodermatitis - KTT

Cumulative statistics of immune modulative effects on blood of patients suffering Neurodermatitis via different toxins and antigens

$\Delta\%$ RNA/DNA-concentration of Granulocytes and Lymphocytes

H. Kief Istanbul 2012
Cumulative statistics of immune modululative effects on blood of patients suffering Neurodermatitis via different toxins and antigens

Toxicity effect: Δ% number of cells / µl

H. Kief Istanbul 2012
Neurodermatitis - KTT

Cumulative presentation of immune modulating effects on blood of Neurodermatitis patients via different toxins and antigens

KTT SF1: Δ% cell morphology of Granulocytes

H. Kief Istanbul 2012
Neurodermatitis - KTT

Cumulative presentation of immune modulating effects on blood of Neurodermatitis patients via different toxins and antigenes

KTT – SF3: Δ% of cell morphology and cell count

H. Kief Istanbul 2012
Cumulative presentation of immune modulating effects on blood of Neurodermatitis patients via different toxins and antigens

KTT SF4: Δ% Granulocytes x Δ% Lymphocytes x Δ% Monocytes

H. Kief Istanbul 2012
Diagnostic Value of KTT

Auto-immune disease caused tetany
Diagnosis via KTT-toxicity effect
Diagnostic Value of KTT

(Part-) Remission of Multiple Sclerosis

Identification of triggering factors via Culture-Transformation-Test.

MS: Status 1994

after 6 months AHIT ® 2006

H. Kief Istanbul 2012
Diagnostic Value of KTT

Remission of Morbus Boeck

Elimination of the secondary heart insufficiency (Cor bovinum).

Identification of triggering factors via Culture-Transformation-Test.
KTT – action chart

Controlling of AHIT™

- Patient data
- Diagnosis
- Therapy
- Control
- Potential revision of diagnosis

KTT

AHIT

Humoral parameters

Stimulation

Culture

Control
What is the value of the KTT?

1. The KTT procedurally rests on base values generated by state-of-art technical equipment. The difference of these base values is mathematically related to the “regular” blood picture and the depletion determined.

2. It detects stimulating, suppressing and toxic factors to the cellular immune system.

3. Many times the results are congruent with serologic lab tests and confirms or complements their information.

4. It helps to verify forgotten focal infections.
What is the value of the KTT?

5. It allows to detect toxic effects caused by bacteria and viruses.
6. Even exotic toxins and allergens can be investigated.
7. It can be used as a follow-up of the autologous immune therapy.
8. Stimulative factors for an individually specific production of the AHIT™ can be identified.
9. It gains particular importance in the diagnosis and clarification of the genesis of many auto-immune diseases as well as other unexplained medical conditions.
10. It helps to determine the increasing virulence of different germs in mixed infections.
Are there any disadvantages to the KT-Test?

1. A relatively “young“ or successful vaccinaction with accordingly high titer of antibodies or a hypo-sensitization may result in a false positive reaction.

2. Due to numerous blood cultures the test is time-consuming.

3. Presently the test is not automated resulting in a time-consuming data entry.
Indications of AHIT™

Asthma
Results of treating asthma with AHIT™

- Full remission: 36%
- Drastic improvement: 32%
- Improvement: 11%
- No improvement: 21%

n = 84
Medicament consumption (asthma)

before and after AHIT™

H. Kief Istanbul 2012
Asthma - KTT

Cumulative presentation of immune modulating effects on blood of asthma patients via different toxins and antigenes

Δ% Granularity: amount of stainable bio-material

H. Kief Istanbul 2012
Asthma - KTT

Cumulative presentation of immune modulating effects on blood of asthma patients via different toxins and antigenes

Δ% RNA/DNA-concentration of Granulocytes and Lymphocytes

H. Kief Istanbul 2012
Asthma - KTT

Cumulative presentation of immune modulating effects on blood of asthma patients via different toxins and antigens

Toxicity effects: Δ% amount of cells/µl

H. Kief Istanbul 2012
Asthma - KTT

Cumulative presentation of immune modulating effects on blood of asthma patients via different toxins and antigens

KTT SF1: Δ% cell morphology of Granulocytes

H. Kief Istanbul 2012
Asthma - KTT

Cumulative presentation of immune modulating effects on blood of asthma patients via different toxins and antigens

KTT – SF3: Δ% of cell morphology and cell count

1. Cholera
2. hepatitis A, B
3. influenza
4. coli D7
5. streptococci
6. rubella
7. measles, mumps, rubella
8. typhus
9. meningitis, tubercula
10. hepatitis
11. typhoid
12. diphtheria
13. pertussis, tetanus, polio, haemophilia
14. hepatitis
15. influenza
16. streptococci
17. diphteria
18. pertussis
19. typhus
20. measles, mumps, rubella
21. polio
22. pneumococci
23. diphterie
24. sinusitis
25. candida
26. rotavirus
27. e. coli, morgan., prot., klebs., entero. faec.
28. mycobacteria
29. acarian farin.
30. acarian pterony.
31. aspergillus fumigatus
32. oat
33. grasses / grain
34. trees II / middle bloomers
35. fungi II
36. n = 27

H. Kief Istanbul 2012
Asthma - KTT

Cumulative presentation of immune modulating effects on blood of asthma patients via different toxins and antigenes

KTT SF4: Δ% Granulocytes x Δ% Lymphocytes x Δ% Monocytes

H. Kief Istanbul 2012
Indications of AHIT™

Polyarthritis
Primar chronic Polyarthritis

Improvement of mobility after 1,5 years

H. Kief Istanbul 2012
Primar chronic Polyarthritis

Improvement of mobility after 3 month

H. Kief Istanbul 2012
Primar chronic Polyarthritis

Improvement of mobility after 3 month

H. Kief Istanbul 2012
Immunevasculitis

Full remission after 3 month, no relapse since 15 years

H. Kief Istanbul 2012
Indications of AHIT™

Colitis
Colitis ulcerosa pain-score

constant pain, temporarily strong, cramps 3-
constant pain short phases of relief 2-
periods of pain and cramps outweigh 1-
succession of pain and relief +/-
seasonal light pain and cramps 1+
sporadic light pain 2+
totally painfree 3+

n = 14

before during after

n = 14

n = 13

H. Kief Istanbul 2012
Colitis mucosa and ulcerosa

Distribution of the frequency of symptoms

before therapy

during therapy

after therapy

n = 15
Crohn's disease pain score

- Constant pain, temporarily strong, cramps: 3-
- Periods of pain and cramps outweigh: 1+
- Succession of pain and relief: +/-
- Seasonal light pain and cramps: 1+
- Sporadic light pain: 2+
- Totally painfree: 3+

n = 16

H. Kief Istanbul 2012
Crohn’s disease

Distribution of the frequency of symptoms

Before therapy: n = 20

During therapy: n = 20

After therapy: n = 20

H. Kief Istanbul 2012
Indications of AHIT™

Psoriasis
Comparative trial - Psoriasis

Fumaric Acid vs. AHIT™

Improvement

number of patients

H. Kief Istanbul 2012
Psoriasis
Psoriasis
Psoriasis
Psoriasis - KTT

Cumulative presentation of immune modulating effects on blood of Psoriasis patients via different toxins and antigens

Δ% RNA/DNA-concentration of Granulocytes and Lymphocytes

H. Kief Istanbul 2012
Psoriasis - KTT

Cumulative presentation of immune modulating effects on blood of Psoriasis patients via different toxins and antigens

Δ% Granularity: amount of stainable bio-material

H. Kief Istanbul 2012
Psoriasis - KTT

Cumulative presentation of immune modulating effects on blood of Psoriasis patients via different toxins and antigens.

Toxicity effects: $\Delta\%$ amount of cells/µl

-10 -5 0 5 10 15 20 25 30 35

1 cholera
3 tetanus
5 influenza
6 streptococci
9 herpes
10 typhus
13 pneumococci
19 sinusitis
21 mold
22 candida
26 rotavirus
29 chlamydia
30 mycoplasma
aspergillus
36 serra
38 esch.coli, morgan,
prot., kle ...
39 acarine
65 grasses / grain
67 trees I / early bloomers
68 trees II / middle bloomers
70 fungi II

$n = 31$

H. Kief Istanbul 2012
Psoriasis - KTT

Cumulative presentation of immune modulating effects on blood of Psoriasis patients via different toxins and antigens

KTT – SF1: Δ% cell morphology of Granulocytes

H. Kief Istanbul 2012
Psoriasis - KTT

Cumulative presentation of immune modulating effects on blood of Psoriasis patients via different toxins and antigens

KTT– SF3: Δ% of cell morphology and cell count

H. Kief Istanbul 2012
Psoriasis - KTT

Cumulative presentation of immune modulating effects on blood of Psoriasis patients via different toxins and antigens

KTT – SF4: Δ% Granulocytes x Δ% Lymphocytes x Δ% Monocytes

H. Kief Istanbul 2012
Antimicrobial peptides (AMPs) in psoriasis herds shows an activity against:

1. Escherichia coli
2. Staphylococcus aureus
3. Pseudomonas aeruginosa
4. Candida albicans
5. Acinetobacter Baumannii
6. Propionibacterium acnes
7. Streptococcus pyogenes
8. Streptococcus Pneumoniae
9. Enterococcus faecalis

Statistically significant agreement with the results of the KT-test
Psoriasis
Psoriasis
Psoriasis
Psoriasis

H. Kief Istanbul 2012
Psoriasis

30.09.2008

05.01.2009

H. Kief Istanbul 2012
Psoriasis

H. Kief Istanbul 2012
Psoriasis

H. Kief Istanbul 2012
Psoriasis

H. Kief Istanbul 2012

02.09.2008

26.11.2008
Psoriasis

H. Kief Istanbul 2012
Psoriasis
Psoriasis

H. Kief Istanbul 2012
Psoriasis
Psoriasis

H. Kief Istanbul 2012
Psoriasis
Incurable diseases with high chance for full remission by AHIT

- Lungfibrosis
- Myasthenia gravis
- Post poliosyndrom
Summary/Conclusion

1. systemic treatment
2. wide range of indications
3. possible to treat multiple indications
4. no transferable infections
The Autologous Immune Therapy

Thank you for your attention!